It's a fact: we need oxygen to live. It's because of the way our cells use oxygen that we are able to breathe, exercise, and even think. In each of our cells, structures called mitochondria take the oxygen which diffuses in from our blood, disassemble it into its two component atoms (remember, oxygen - O2 - is composed of two oxygen atoms), and then hook some available hydrogen nuclei to them to form water.

The process releases energy, which is used for all functions of life. The problem is that in disassembling the oxygen molecule, it involves a step in which an extra electron is hooked on. This forms an intermediate called a superoxide anion, and this is a bad actor. It is highly reactive, and it will make mincemeat out of most other molecules it comes in contact with.

These anions are like coals in a furnace: as long as they are contained, we get lots of safe chemical energy; if they get out we get a great deal of damage. The mitochondria are designed to contain these superoxide anions, but just in case some get loose, there are a host of protective chemical reactions designed to sop them up and prevent them from doing any damage.

Besides producing excessive amounts of the superoxide anion, elevated tissue oxygen levels also affect a variety of other biochemical reactions which may affect oxygen toxicity in ways that are only beginning to be understood. Tissue-protective mechanisms and biochemical reactions are tuned to life in an atmosphere containing 21 percent oxygen, or 0.21 atmospheres absolute (ata) oxygen partial pressure. (See sidebar: "Remember Partial Pressure?", page 34.) As the partial pressure increases above this comfortable 0.21 ata, protective mechanisms are slowly overwhelmed and biochemical reactions are affected. This may eventually result in "oxtox," or oxygen toxicity.

 

Oxtox - What Is It?

Oxygen toxicity is a time duration phenomenon: that is, both time and partial pressure play a role. If an oxygen partial pressure of 2 ata is breathed for a few minutes, there would probably not be any problem. But, breathing it for an hour, might cause problems. This is why oxygen exposure limits are given as partial pressure/time limits. As the partial pressure gets higher, the recommended exposure time gets shorter.

What kind of problems might breathing a high oxygen partial pressure cause? It is the lungs and the brain which are the target organs of major concern in diving oxygen toxicity. Oxygen toxicity in the lungs (pulmonary oxygen toxicity) is like getting a bad case of the flu, but it will rarely cause permanent damage. The most common situation in which pulmonary oxygen toxicity might occur is during very long recompression treatments.

Oxygen toxicity of the brain, commonly referred to as central nervous system (CNS) oxygen toxicity, is different. It can occur during actual diving, and when it does, it can ruin your day - and possibly more. Some symptoms of CNS oxygen toxicity include flashing lights in front of the eyes, tunnel vision, loud ringing or roaring in the ear (tinnitus), confusion, lethargy, a feeling of nausea or vertigo, areas of numbness or tingling, and muscular twitching, especially of the lips.

These CNS symptoms are inconvenient, and a warning to change to a breathing gas with a lower oxygen partial pressure as soon as possible, but do not put the diver at risk of injury at this point. The big daddy of CNS symptoms does, however. It is the full-blown grand mal convulsion. During a convulsion, a diver will thrash about, perhaps bang his head into something hard, or if underwater, may lose his mouthpiece. The result can be trauma or drowning.

The good news is that convulsions are rare; the bad news is that all the inconvenient CNS symptoms noted above do not always provide warning of an impending convulsion. In some cases, a convulsion may occur without any warning at all. One more piece of good news: the convulsion in and of itself is not harmful, so if you don't crack your head or drown, you should have no permanent damage.

By now you're probably asking where these dire descriptions are leading.

To a better understanding, we hope, of diving on nitrox. As air-breathing sport divers need to know about decompression sickness (DCS), divers using high oxygen in nitrogen mixtures (nitrox) need to know about oxygen toxicity. (To read more about nitrox, see Alert Diver, January/February 1996, p.32.)

Both decompression sickness and oxygen toxicity are rare occurrences; they can be made rarer with good diving practices. With DCS, it's using your table or computer conservatively and keeping the ascent rate down. With oxtox, it's paying attention to the partial pressure and the amount of exposure time.

The main thing we're discussing here is CNS oxygen toxicity, because this is the most dangerous kind. Lung oxygen toxicity is unlikely to be a problem for recreational divers, so it will be mentioned only in passing.

Remember Partial Pressure?

The partial pressure of a gas is a measure of the number of molecules in a given volume - the molecular concentration. The physiological effects of a gas are due mainly to its partial pressure, no matter what the total pressure is.

If a gas has only one component, say 100-percent oxygen, the partial pressure and the pressure are the same. If there is a gas mix, then the partial pressure is the gas fraction times the total pressure. A 50 percent oxygen-in-nitrogen mix has an oxygen partial pressure (pO2) of 1.0 atmosphere absolute (ata) at a depth of 33 feet / 10 meters where the total pressure is 2 ata.

At this depth the 50 percent oxygen would have the same physiological effect as 100 percent oxygen at the surface. Breathing a 100 percent oxygen mix at a depth of 33 feet / 10 meters (2 ata total pressure) would be equivalent to breathing the 50 percent mix at 132 feet / 40 meters (5 ata total pressure).

Royal Navy Studies

The grand old man of CNS oxygen toxicity is Professor Kenneth Donald, who cut his teeth on the problem during World War II in Great Britain. (Want to know more? Read Reference 1, page 40.) At that time the Royal Navy was under pressure to develop the technology used by the Italians to severely damage the battleships HMS Queen Elizabeth and HMS Valiant in the harbor of the port city of Alexandria, Egypt, in 1941.

Italian divers wearing 100 percent oxygen rebreathers, drove a torpedo close into a ship. While submerged to avoid detection, they detached its warhead under the ship's hull, and beat a hasty retreat after a timer was set.

The Royal Navy soon began developing its own band of underwater divers called "Charioteers" to carry out similar missions. Dr. Donald was assigned as a Surgeon Lieutenant to provide medical care during training of the divers using the British 100 percent oxygen rebreathers. The accepted safe limits for breathing 100 percent oxygen at the time (2 hours at 50 feet / 15 meters, 30 minutes at 90 feet / 27 meters) produced enough convulsions that the British Admiralty decided some sort of studies were needed to define the scope of the problem and, hopefully, find a solution.

About to be transferred to the Shetland Islands, Dr. Donald had a change of fortune and proceeded instead to a facility just outside of London, where he found himself heading up a major research effort to get a handle on the problem of CNS oxygen toxicity.

Royal Navy Discoveries

Over the next three years, Dr. Donald's team conducted literally hundreds of exposures on human volunteers (remember, there was a war on). This series of studies formed the basis of what we know about CNS oxygen toxicity, namely: